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A new numerical method for solving geometric moving interface problems is
presented. The method combines a level set approach and a semi-Lagrangian time
stepping scheme which is explicit yet unconditionally stable. The combination de-
couples each mesh point from the others and the time step from the CFL stability
condition, permitting the construction of methods which are efficient, adaptive, and
modular. Analysis of a linear one-dimensional model problem suggests a surpris-
ing convergence criterion which is supported by heuristic arguments and confirmed
by an extensive collection of two-dimensional numerical results. The new method
computes correct viscosity solutions to problems involving geometry, anisotropy,
curvature, and complex topological events.c© 1999 Academic Press
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1. INTRODUCTION

We present a new numerical method for moving interface problems. The method merges
and breaks interfaces naturally and generally via the level set approach, while decoupling
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time step restrictions from the Courant–Friedrichs-Lewy (CFL) stability condition by using
an explicit yet unconditionally stable semi-Lagrangian time stepping scheme with velocity
smoothing and frequent redistancing. The time stepping scheme also decouples each mesh
point from the others, potentially simplifying both adaptive mesh refinement and parallel
implementation.

Section 2 of this paper contains standard background material: moving interface problems
and examples, level set and semi-Lagrangian methods. Section 3 presents our method and
explains why it works. Section 4 validates it by solving an extensive collection of numerical
examples including geometric motions with corners, anisotropy, curvature, and complex
topology. Section 5 draws conclusions and discusses future extensions and applications.

2. BACKGROUND

This section summarizes standard background material on moving interface problems and
numerical methods. Subsection 2.1 classifies moving interface problems commonly found
in applications, by the degree of locality of the velocity as a functional of the interface.
Subsection 2.2 describes how to convert these problems into level set equations on a fixed
domain, eliminating the moving interface. Subsection 2.3 introduces the level set method for
moving interfaces, Subsection 2.4 relates moving interfaces and CFL conditions for some
important model problems, and Subsection 2.5 reviews and analyzes the simplest semi-
Lagrangian scheme for hyperbolic partial differential equations (PDEs). Subsection 2.6
discusses the derivation of higher-order accurate semi-Lagrangian schemes.

2.1. Moving Interface Problems

A moving interface0(t) is a collection of nonintersecting oriented closed curves inR2

or surfaces inR3 for each timet , a set-valued function of time. Since each component of
0(t) is closed,0(t) has an interior and an exterior. Assume0(t) is sufficiently smooth in
space and time. Then for each timet and eachx ∈0(t) there is

◦ an outward unit normal vectorN(x, t),
◦ a signed curvatureC(x, t), chosen positive for a circle or sphere, and
◦ a normal velocityV(x, t), chosen positive where the interior of0(t) is growing.

Given a parametrization of0(t), these quantities can be calculated by standard geometric
formulas found in [41].

A moving interface problemis a closed system of equations which specifies the normal
velocity V as a functional of0 and the other unknowns in the problem. Such problems can
be divided into three broad classes involving passive transport, geometry, and/or PDEs or
integral relations off the interface. All occur frequently in applications.

2.1.1. Passive Transport

Passive transport moves an interface in some external flow, which may be given a priori
or computed on the fly but does not depend on the interface itself. ThusF(x, t) is a given
velocity field onRd and the normal velocity of0(t) is V(x, t)= N(x, t) · F(x, t) which is
independent of0(t). This type of problem occurs when modeling common and important
physical situations such as rotation, shearing, and stretching in an ambient flow, and is
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conceptually the simplest to solve because the motion of each point on the interface obeys
an ordinary differential equation with a known right-hand side.

2.1.2. Geometry

More complex problems allow the local interfacial geometry to interact with the motion,
so the interface satisfies a partial rather than ordinary differential equation. The normal
velocity is a given function

V = V(x, t, N,C, . . .) (1)

of the interfacial position, normal, curvature, and other local geometric quantities.

EXAMPLE 1. The simplest geometric motion propagates0(t) along its normal vector
with constant uniform velocity. Corners form and merging occurs if0(0) is not convex, so
0(t) does not remain smooth, yielding the simplest example of a “viscosity solution” to a
Hamilton–Jacobi equation [7, 13].

Specialized methods for motion with unit normal velocity can be built from Huygens’
principle:0(t) is an envelope of the set of radius-|t | circles centered on each point of0(0).
Consider, for example, the inverted “V”y=−|x| shown in Fig. 1. If0(t) is given by
y=ψ(x, t), Huygens’ principle gives

ψ(x, t) =


x +√2t, x < −t/

√
2

√
t2− x2, |x| < t/

√
2

−x +√2t, x > t/
√

2

(2)

for t ≥ 0. As t ≤ 0 decreases, the inner envelope remains sharp:ψ(x, t)=−|x−√2t | for
t < 0. Time-reversal symmetry is broken, as for shocks in hyperbolic conservation laws
[17].

FIG. 1. Corners moving outward with unit velocity round off into circular arcs, while corners moving inward
remain sharp by Huygens’ principle.
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EXAMPLE 2. A common two-dimensional geometric problem has a curve0(t) evolving
under aK -fold symmetric anisotropic normal velocity

V(x, t) = R+ ε cos(K θ + θ0)+ (R′ + ε′ cos(K ′θ + θ ′0))C, (3)

where cosθ = N · e1 is the cosine of the angle between the normal vector and the positive
x-axis.

Anisotropic velocity fields grow or shrink interfaces along their normals with speed
depending on local orientation, easily producing complex merging shapes and making
these models popular in materials science [40]. With sufficient anisotropy, such velocity
fields produce faceted interfaces via the Wulff construction [8, 21, 23, 43, 42]. At the corners
of facets, the viscosity solution behaves differently from Example 1, because the velocity
is anisotropic. Rather than rounding off, the corner remains sharp even when the velocity
is a smooth function of the normal direction. See Subsections 4.2.3 and 4.2.7 for numerical
examples.

2.1.3. PDE

In moving interface problems for PDEs, the interfacial velocity depends on additional
fields satisfying algebraic, ordinary differential, partial differential, or integral equations
on or off the interface. These fields can mediate long-distance nonlocal interactions, so the
evolution equation for the interface is no longer a local PDE.

EXAMPLE 3. In volume diffusion [9, 20],

V(x, t) = ∂u(x, t)

∂N
, (4)

whereu(x, t) solves the Laplace equation

1u = 0 outside0(t) (5)

and the boundary condition

u = C on0(t), (6)

with boundary conditions at∞. Using the Dirichlet–Neumann operator30 which maps
boundary values for the Laplace equation outside0 to the normal derivative of the solution
on0, Eqs. (4)–(6) become a single nonlinear nonlocal pseudodifferential equation

V(t) = 30(t)C(t). (7)

Equation (7) gives the velocityV , and a curve movement equation which moves the interface
with given velocityV completes the moving interface problem. Several curve movement
equations exist [34].
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EXAMPLE 4. A model for crystal growth is treated in [2, 4, 5, 26, 28, 34]. HereV is
the jump across the interface of the normal derivative∂u(x,t)

∂N , whereu satisfies the Stefan
problem

ut = 1u off 0(t) (8)

u = −εc(N)C − εv(N)V on0(t) (9)

with boundary conditions on outer boundaries. Hereεc andεv are given functions of the
outward normalN, as in Example 2.

Problems close to engineering practice often involve complex systems of PDEs and inte-
gral equations modeling physical effects such as heat flow, convection, elasticity, radiation,
chemical and biological reactions, and fields satisfying integrodifferential conditions on the
interface itself. Such problems can be extremely difficult to solve numerically, even without
moving interfaces.

2.2. Level Set Equations

Moving interface problems can be reformulated as “level set equations” on a fixed domain,
using thezero set

0 = {x ∈ Rd : ϕ(x) = 0} (10)

of a functionϕ : Rd→R. Given an interface0, there are many functionsϕ for which0 is
the zero set: for example, the distance and the signed distance to0,

ϕ(x) = min
y∈0
‖x − y‖, ϕ(x) = ±min

y∈0
‖x − y‖, (11)

where the plus sign is chosen forx in the interior of0. However, not every zero set is
admissible as an interface. Zero sets may be flat whereϕ is equal to zero on a region and
may cross at isolated points. These pathologies are excluded if∇ϕ never vanishes on0.
Thenϕ crosses zero cleanly and we can recover0 from ϕ by contouring. Thus the signed
distance represents0 more stably than the distance. Figure 2 shows a hexagon in the plane
and the corresponding signed distance functionϕ.

Many geometric properties of0 have simple expressions in terms ofϕ, becauseϕ con-
tains local information which allows implicit differentiation of0. For example, the normal
velocity, outward unit normal, and curvature are given by

V = ϕt/‖∇ϕ‖, (12)

N = ∇ϕ/‖∇ϕ‖, (13)

C = −∇ · N, (14)

if ϕ is chosen to be positive inside the zero set [41]. These formulas can be evaluated
everywhereϕ is known, as well as on0. At a pointx away from0, they give the geometry
of the level set passing throughx.

Thus if we have the interface then we can compute its velocity fromϕ. Conversely, given
an extension of the normal velocityV to a function oft andx ∈Rd, Eq. (12) can be viewed
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FIG. 2. The correspondence between (a) a hexagonal interface and (b) the signed distanceϕ to the interface,
plotted over a 202 grid.
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as a PDE—the “level set equation”—which moves0 by evolvingϕ:

ϕt − V‖∇ϕ‖ = 0. (15)

Alternatively, we can construct a vector velocity fieldF on Rd with F =V N on 0, and
solve the “linear level set equation”

ϕt − F · ∇ϕ = 0. (16)

Equations (15) and (16) move every level set ofϕ with the extended velocityV or F ,
and in particular move the zero set with the correct velocity. This approach to moving
interfaces embeds the topology inϕ rather than0(t), allowing merging, breaking, and
other topological changes to be handled automatically. We pay the price of going up one
dimension. EitherV or V N must be extended to a function on the whole space, but the
extension can be almost completely arbitrary away from0(t).

The moving interface problems from Subsection 2.1 can be put in level set form as
follows.

2.2.1. Passive Transport

For passive transport,F is already defined onRd and is a natural extension ofV N. Since
N can be extended by Eq. (13), a natural extension ofV is N · F . The resulting level set
equation is a hyperbolic PDE, nonlinear ifV is extended,

ϕt − V(x, t)‖∇ϕ‖ = 0 (17)

and linear ifF is extended,

ϕt − F(x, t) · ∇ϕ = 0. (18)

N is singular where∇ϕ vanishes or is singular. For example, in Fig. 2,∇ϕ does not exist
at the center and the corners of each hexagonal level set, whereϕ is not differentiable.
Even if ∇ϕ exists everywhere, it must vanish at maximum points interior to0, so N is
never globally smooth. This suggests that we should extendF rather thanV , solve Eq. (16)
instead of Eq. (15), and avoid usingN off 0.

2.2.2. Geometry

With geometric quantities extended naturally by Eqs. (12)–(14), the level set equation
for Example 2 reads

ϕt − (R+ ε cos(K θ + θ0))‖∇ϕ‖ = (R′ + ε′ cos(K ′θ + θ ′0))∇ · (∇ϕ/‖∇ϕ‖)‖∇ϕ‖, (19)

where cosθ =ϕx/‖∇ϕ‖. This is a mixed hyperbolic-parabolic PDE containing both first-
order and second-order spatial derivatives ofϕ, and becoming singular where∇ϕ vanishes.
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2.2.3. PDE

For fluid problems with moving interfaces, the fluid velocity provides a natural extension
of V N off the interface. But in many other PDE-type models, the normal velocity is built
from quantities such as boundary values and jump conditions, whose natural habitat is the
interface. Then an extension ofV is not obvious. One could setV = N · ∇u in Example 3
(volume diffusion), but∇u is discontinuous across0(t). In Example 4 (crystal growth),V
is defined as a jump across0(t) and an extension ofV is even less obvious. Thus various
extensions have been developed: In [28], for example, our Eq. (9) was solved forV under
the assumptionεv(N) 6= 0 to get

V = −1

εv(N)
(u+ εc(N)C), (20)

whereN andC are extended naturally and the jump condition is built into the solution of
the heat equation via classical potential theory. General schemes which extend any velocity
field off any interface were presented in [1, 5, 38, 39] and applied to this crystal growth
model in [5].

2.3. The Level Set Method

The level set method moves0(t) from t = 0 by constructing an initial level set function
ϕ(x, 0) for 0(0) and an extended velocity fieldV or F for t ≥ 0, solving one of the level set
equations Eq. (15) or Eq. (16) numerically, then finding0(t) from ϕ(x, t) when required.
The method was introduced in [22], and an extensive recent survey is [27]. It has undergone
much development and been applied to many moving interface problems.

The main advantage of the level set method over other numerical methods for moving
interfaces is its natural treatment of topological changes such as merging and breaking. These
changes can be difficult to handle with methods based on parametrization, but solving the
level set equation merges interfaces naturally and automatically as shown in Fig. 3.

There are some potential difficulties with the level set method. It can be more expensive
since it goes up a dimension, particularly if uniform meshes are used. Extending the velocity
off 0(t) can be difficult. One must be careful to obtain the correct “viscosity solution” of
Eq. (15) or Eq. (16), by using an appropriate solver for the level set equation [27]. The
method is not sufficientlymodular; a new code must be written for each new problem to
be solved, since the velocity evaluation is intertwined with the moving interface code by
velocity extension and CFL conditions.

We present a level set solver on a uniform mesh in Section 3, which is shown experimen-
tally to obtain the correct viscosity solution for passive transport and geometric problems
where velocity extension is straightforward. This solver is designed for easy adaptive mesh
refinement with large time steps, yielding optimal efficiency. An adaptive version is devel-
oped in [37]. On this foundation, an efficient, general, and robust velocity extension is built
in [38] and yields a completely modular level set method.

2.4. CFL Conditions

Almost all explicit schemes for PDEs such as the level set equation encounter time step
restrictions due to the famous Courant–Friedrichs–Lewy (CFL) condition [17]. This neces-
sary condition for convergence requires that in the limit as the time and space mesh sizes go



FIG. 3. (a) Two hexagons moving with constant normal velocity merge; the corresponding level set function
is shown at (b) initial and (c) final times.
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to zero, the domain of dependence of the numerical solution at each spacetime point must
include that of the exact solution. For explicit schemes with bounded stencils for first-order
hyperbolic PDEs, the CFL condition imposes a time step restriction of the dimensionally
natural form|Uk| ≤O(h), wherek is the time step,h is the spatial mesh size, andU is
proportional to a characteristic velocity of the PDE. For higher-order PDEs these time step
restrictions often becomek≤O(h2) or O(h3) and make explicit schemes prohibitively
expensive. The usual remedy—implicit time-stepping schemes—is often unavailable for
level set equations because the complex and problem-dependent relation betweenV and
0(t) frustrates most nonlinear equation solvers.

In passive transport and unit normal velocity, the level set equation is first-order hyper-
bolic, so most explicit schemes encounter a time step restrictionk≤O(h). This restriction
is inconvenient if a fine or adaptive mesh is used. In the curvature-dependent geometric
motion of Example 2, explicit treatment of the second-order parabolic term requires an
asymptotically smaller time stepk≤O(h2). Volume diffusion (Example 3) involves the
theory of the “Dirichlet–Neumann operator”3 which maps boundary values to normal
derivatives.3 is a first-order pseudodifferential operator, andC is a second derivative ofϕ,
soV =3C resembles a third-order derivative ofϕ. Thereforek≤O(h3), and similarly in
Example 4 (crystal growth). This condition requires extremely small time steps. If higher-
order PDEs such as elasticity are involved, these small time steps can make most schemes
prohibitively expensive.

These time step restrictions can be eliminated by allowing unbounded stencils. For ex-
ample, we can build a trivial explicit method for the heat equation which is stable and
convergent with large time stepsk=O(h), if we allow stencil size to grow as the mesh is
refined. Take the standard explicit finite difference method on a sequence of meshes with
mesh sizesh= 1/n and time step1t = h2/2, so the usual CFL condition is satisfied. Define
a new finite difference method with step sizek= h= 2n1t = 1/n by taking 2n tiny steps
of the standard method to pass fromt to t + k. The new method is stable and convergent
with k= h, hence satisfies the CFL condition.

Our moving interface method decouples time steps from CFL conditions by using the
explicit unconditionally stable time stepping scheme reviewed in Subsection 2.5. More
general schemes of this “semi-Lagrangian” type are presented in Subsection 2.6. For first-
order hyperbolic problems, these schemes satisfy the CFL condition with large time steps by
shifting the stencil. For higher-order level set equations, heuristic reasons for our methods
to satisfy CFL conditions are discussed in Subsection 3.3.

2.5. The CIR Scheme

Consider the simplest linear hyperbolic PDE

ϕt − F(x, t) · ∇ϕ = 0. (21)

Equation (21) propagatesϕ values along the characteristic curvess(t) defined by

ẋ(t) = −F(s(t), t), s(0) = x0, (22)

because

d

dt
ϕ(s(t), t) = ϕt + ẋ · ϕx = ϕt − F · ∇ϕ = 0 (23)
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if ϕ solves Eq. (21). Thus we can findϕ values at any timet by finding the characteristic
curve passing through(x, t) and following it backwards to some previous point(x0, t0)
where the value ofϕ is known: thenϕ(x, t)=ϕ(x0, t0). This observation forms the basis
of the “backward characteristic” or “CIR” scheme due to Courant, Isaacson, and Rees
[6], which is the simplest semi-Lagrangian scheme. Givenϕ at timetn, CIR approximates
ϕ(x, tn+1) at any pointx at timetn+1= tn+ k by evaluating the previous velocityF(x, tn),
approximating the backward characteristic throughx by a straight line

x + (tn+1− t)F(x, tn) ≈ s(t) (24)

and interpolatingϕ at timetn to the point

x + kF(x, tn) ≈ s(tn). (25)

Thenϕ(x, tn+1) is set equal to the interpolated value.
For linear PDEs, the Lax–Richtmyer equivalence theorem [17] guarantees that CIR will

converge to the exact solution ask, h→ 0 if it is stable and consistent. For nonlinear PDEs,
stability and consistency are necessary but not sufficient.

2.5.1. Stability

The stability properties of the CIR scheme are excellent. Each new valueϕ(x, tn+1)

is a single interpolated value ofϕ at time tn, so unconditional stability is guaranteed in
any norm where the interpolation does not increase norms. For example, CIR with linear
interpolation is unconditionally stable in the maximum norm. In general, semi-Lagrangian
schemes satisfy the CFL condition by shifting the stencil, rather than restricting the time
step. Thus information propagates over long distances in one step.

2.5.2. Consistency

Explicit unconditionally stable schemes like CIR or the Dufort–Frankel scheme [17]
usually require some consistency condition, in place of the time step restrictionk≤O(h)
required by other explicit schemes. The consistency condition for CIR can be illustrated
with the simplest one-dimensional linear hyperbolic PDE

ϕt − Vϕx = 0, ϕ(x, 0) = f (x), (26)

whose solution isϕ(x, t)= f (x+V t). The CIR scheme on a uniform meshx= jh, t = nk
produces numerical approximationsun

j to ϕ( jh, nk) by the formula

un+1
j = qun

m+1+ (1− q)un
m, (27)

where

m= j − bV k/hc, q= ( j −m)h− V k

h
, (28)

as in Fig. 4. The scheme is unconditionally stable because the projected points need not lie
in the same computational cell asx; the stencil shifts to satisfy the CFL condition discussed
in Subsection 2.4.
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FIG. 4. One-dimensional semi-Lagrangian CIR scheme: movex backward with velocityV , then interpolate
ϕ at timet to points.

To check consistency, we plug the exact solutionϕ into the numerical formula and bound
the truncation errorτ(x, t) defined by

ϕ( jh, (n+ 1)k) = qϕ((m+ 1)h, nk)+ (1− q)ϕ(mh, nk)+ kτ( jh, (n+ 1)k). (29)

The scheme is consistent to first order ifτ =O(h)+O(k) on a fixed time interval as
h, k→O. Taylor expansion gives

τ = O

(
h2

k

)
+ O(k) (30)

if the initial data f have two continuous derivatives. The first term comes from theO(h2)

error in linear interpolation, repeated atO(1/k) time steps, while the second term is due to
approximating the characteristics by straight lines with first-order accurate slopesF(x, tn).
Thus CIR is first-order accurate if the following condition is satisfied,

k ≥ Ch (31)

for some arbitrary constantC. This consistency condition differs from the usual time step
restriction|V k| ≤ h in two important ways: the inequality is reversed soh is bounded rather
than k, and the constantC is completely independent ofV and need only be fixed as
k, h→ 0.

A similar calculation shows that with higher-order accurate interpolation this lower bound
becomes even less restrictive. For an interpolation method with errorO(hq) per interpola-
tion, a consistency conditionk≥O(hp) produces a semi-Lagrangian scheme with formal
errorO(hq−p)+O(k).However, stability becomes an issue since higher-order interpolation
may allow the maximum norm of the solution to increase.

2.5.3. Nonlinear Hyperbolic Problems

To apply the CIR scheme to nonlinear hyperbolic PDEs of the form

ϕt − F(x, t, ϕ) · ∇ϕ = 0, (32)

Courant, Isaacson, and Rees use a standard approach: Freezeϕ at timetn in the argument list
of F , then apply the linear CIR scheme to move forward one step fromtn to tn+1. The scheme
remains unconditionally stable, and if the solution remains smooth, Taylor expansion shows
that consistency is unaffected. However, solutions to a general nonlinear hyperbolic PDE
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do not remain smooth. Instead, they develop shock discontinuities and degenerate to weak
solutions. Uniqueness then fails and an entropy condition is required to select the correct
weak solution.

When shocks occur, both theory and numerics become more difficult. If the PDE is a
conservation law and the numerical scheme is in conservation form, then the Lax–Wendroff
theorem [17] guarantees that any limit of the scheme is a weak solution. Equation (32) is not
in general a conservation law, and CIR is not in conservation form, so the Lax–Wendroff
theorem does not apply. In fact, CIR moves shocks at the wrong speed even in simple
conservation laws [17] and thus cannot be convergent.

Thus the CIR scheme—while explicit and unconditionally stable—has never been popular
for solving nonlinear conservation laws. It has been used mainly for linear problems, where
stability plus consistency guarantee convergence. In Subsection 3.3, we explain the special
features of nonlinear level set equations which permit the convergence of methods based
on the CIR scheme.

2.6. Semi-Lagrangian Schemes

Semi-Lagrangian schemes which preserve the unconditional stability of CIR but enjoy
higher-order accuracy have been widely used for modeling linear advection in atmospheric
science [3, 24, 31, 33]. Their unconditional stability is particularly useful on the sphere
[18, 32], where it eliminates the stringent time step restriction encountered by Eulerian
schemes on small mesh cells near the poles. In moving interface problems, semi-Lagrangian
schemes permit local mesh refinement with large time steps and overcome the inefficiency
of level set methods on a uniform mesh. Semi-Lagrangian schemes for special level set
equations have been constructed in [11].

An effective viewpoint for the derivation of higher-order accurate semi-Lagrangian
schemes is presented by Smolarkiewicz and Pudykiewicz in [31], and involves three steps:
spacetime integration, interpolation or advection, and discretization.

2.6.1. Spacetime Integration

Consider the linear hyperbolic PDE

ϕt − F · ∇ϕ = 0. (33)

Suppose we knowϕ on a regular grid at times and we seek the valuesϕ(x, t) at some time
t > s. The fundamental theorem of calculus and Eq. (33) give

ϕ(x, t) = ϕ(y, s)+
∫

C
∇ϕ · (dx+ Fdt), (34)

whereC is any path in spacetime connecting(y, s) to (x, t).
Several well-known classes of schemes for Eq. (33) are distinguished by their choices

of C. Eulerian schemes takex= y andC a straight line segment parallel to thet-axis as in
Fig. 5a. Pure Lagrangian schemes takeC to be the Lagrangian trajectoryT defined by

ẋ(σ ) = −F(x(σ ), σ ) (35)
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FIG. 5. Spacetime integration pathsC for (a) Eulerian, (b) Lagrangian, and (c) semi-Lagrangian schemes.
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starting at a grid pointy, as in Fig. 5b. Sincedx+ Fdt= 0 on T , Lagrangian schemes
propagateϕ values unchanged alongT , assuring unconditional stability:

ϕ(x, t) = ϕ(x(t), t) = ϕ(y, s). (36)

The main drawback of Lagrangian schemes is that a regular mesh rapidly distorts, losing
discretization accuracy. This mesh distortion has been a long-standing problem in 2-D
vortex methods, solved in [35].

Semi-Lagrangian schemes combine the regular mesh of an Eulerian scheme with the
unconditional stability of a Lagrangian scheme. They build values ofϕ at regular mesh
pointsx at timet by running a Lagrangian trajectoryT backwards from(x, t) to some point
(y, s), then a simple pathL from the nearest grid pointz at times to y, as in Fig. 5c. Since
dt= 0 onL anddx+ Fdt= 0 onT , we have

ϕ(x, t) = ϕ(z, s)+
∫

L
∇ϕ · dx = ϕ(y, s). (37)

Thus semi-Lagrangian schemes need only transport theϕ evaluation fromx to y, either by
interpolation or advection.

2.6.2. Interpolation or Advection

Many semi-Lagrangian schemes can be derived byinterpolatingϕ(y, s) from known grid
values, as in the CIR scheme of Subsection 2.5. Linear interpolation gives unconditional
stability with first-order accuracy, while higher-order accurate polynomial interpolation can
be unstable. Shape-preserving interpolation methods have been compared in [25], and some
of these methods yield stable schemes for advection.

Stability issues are eliminated in [31] by re-examining the integral expression

ϕ(y, s) = ϕ(z, s)+
∫

L
∇ϕ · dx. (38)

This integral transports the evaluation point ofϕ from z to y and can therefore be viewed as
linear advectionwith constant velocity parallel toy− z. The advantage of this viewpoint
is that monotone Eulerian advection schemes generate stable semi-Lagrangian schemes:
there is no CFL time step restriction sincey andz are less than half a mesh size apart.
Alternatively,L can be built from line segments parallel to coordinate axes, giving naturally
split semi-Lagrangian schemes from one-dimensional Eulerian advection schemes. Viewing
interpolation as advection can also be reversed, yielding shape-preserving interpolation from
Eulerian advection schemes [30].

2.6.3. Discretization

Specific semi-Lagrangian schemes usually approximate trajectories by a second-order
accurate ordinary differential equation solver such as the implicit mid-point rule

y = x + (t − s)F

(
1

2
(x + y),

1

2
(t + s)

)
, (39)

with F values interpolated—or advected—from the grid points. Equation (39) is nonlinear,
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but fixed point iteration is proved convergent in [12, 24] if the weak non-intersection con-
dition

(t − s)‖DF‖< 1 (40)

is satisfied. Semi-Lagrangian schemes are intended for computing smooth solutions without
shocks, but it is shown in [12] that—even for Lipschitz solutions—the accuracy of these
schemes is limited only by trajectory smoothness, not by solution smoothness.

Given second-order accurate trajectories, a second-order semi-Lagrangian scheme can be
built on third-order interpolation methods or Eulerian advection schemes [29]. Spurious os-
cillations are common with high-order polynomial interpolation, making shape-preserving
interpolation and monotone advection preferable. In this paper, we implement first-order
CIR time stepping with arbitrary-order ENO interpolation [15] to provide spatial accuracy
without spurious oscillations. We plan to implement second-order trajectory calculation in
future work to reduce the dissipation evident in a few of our numerical experiments.

3. A SEMI-LAGRANGIAN METHOD FOR MOVING INTERFACES

3.1. Overview of the Method

We use semi-Lagrangian time stepping schemes to solve the level set equation

ϕt − F · ∇ϕ = 0. (41)

HereF is a velocity field onRd which extendsV N off 0(t) and may depend on anything:
ϕ, N, C, other derivatives ofϕ, nonlocal terms, jump conditions, history terms, and so
forth. The combination of level sets and semi-Lagrangian time stepping schemes yields a
family of methods parametrized by several options. After an overview of these methods,
we discuss each option in detail and explain how it contributes to convergence.

3.1.1. Algorithm

Given the level set functionϕ(x, tn) for every pointx in a uniform grid at timetn, our
methods computeϕ(x, tn+1= t + k) at each grid pointx by the CIR scheme:

◦ Evaluate the extended velocityF(x, tn) at x.
◦ Optionally postprocessF with truncation and smoothing.
◦ Movex backwards with velocity−F(x, tn) to get the point

s= x + kF(x, tn). (42)

◦ Interpolate or advectϕ(x, tn) to the points to getϕ(x, tn+1)=ϕ(s, tn).
◦ Redistanceϕ if desired, by replacingϕ by the signed distance to its zero set.

3.1.2. Features

Methods of this family have several unique features:

◦ Each new mesh value is a completely independent computation. This allows easy par-
allel implementation and—more importantly—simplifies construction of adaptive meshes
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which concentrate computational effort near the interface. Thus the cost of going up a
dimension is eliminated.
◦ Adaptive mesh refinement does not globally restrict the time step because the

time step is decoupled from the CFL stability condition by the unconditional stability of
CIR.
◦ Adaptive mesh refinement criteria are easy to formulate because we are computing an

approximate distance to the interface, which naturally determines refinement. No derivative
estimates are necessary.

These methods are implemented on a tree mesh in [37] and combined with fast tree-based
redistancing and extension techniques in [38] to yield a general, efficient, and modular
method for moving interfaces.

3.2. Options

This family of methods can be parametrized by choosing the following options:

◦ The ϕ interpolation or advection technique which obtainsϕ(s, tn) at off-grid
pointss.
◦ The velocity evaluation technique which buildsF(x, tn). This may require differ-

entiation and interpolation in the geometric case, or solution of a PDE or integral equation
in the general case. A general extension technique may be used, or a problem-dependent
extension may be built.
◦ Postprocessing ofF andϕ for stability and accuracy: for some problems such as

curvature flows, the optional postprocessing consisting of velocity truncation and smoothing
and redistancing at every step appears to be mandatory for convergence.
◦ Boundary conditions required when the projected points falls outside the domain

whereϕ is known.

3.2.1. Interpolation ofϕ

Each evaluation ofϕ(x, tn+1) requires interpolation or advection to obtainϕ values off
the grid. There are infinitely many interpolation techniques, but our choice is restricted by
two requirements. First, the level set functionϕ is only Lipschitz continuous in general
since faceting may occur. Thus high-order polynomial interpolation requiring smoothϕ

should be avoided. Second, stability of the semi-Lagrangian approach in any given norm is
guaranteed only for interpolation techniques which do not increase the norm too much. For
example, linear interpolation, shape-preserving interpolation [25], and monotone advection
[31] guarantee unconditional max-norm stability.

Given these two requirements, essentially non-oscillatory (ENO) interpolation [15] pro-
vides sufficient stability and arbitrary-order accuracy. ENO does not guarantee uncondi-
tional stability as linear interpolation would, but gives excellent results in practice. Thus we
use ENO interpolation and differentiation throughout this paper.

In one dimension, ENO is designed to reduce the variation of the interpolant by sliding
the usual polynomial interpolation stencil to minimize differences. In two dimensions, one
coordinate direction is chosen first and the stencil slides in that direction. Each stencil value
is computed by one-dimensional ENO in the other direction. See Fig. 6 for an example.
This choice breaksx− y symmetry, giving a useful error indicator: inaccurate computations
become unsymmetric.
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FIG. 6. A possible stencil for third-order ENO interpolation to the solid points: Open dots indicate mesh
points in the stencil, crosses fictitious points for interpolation in thex variable, and the curve is avoided by the
ENO stencil because across it differences of the interpolated function are large.

3.2.2. Velocity Evaluation

Velocity evaluation may require various problem-dependent computations involvingϕ,
derivatives ofϕ, and possibly other data. For extending the velocity in PDE problems,
we plan to use the general velocity extension of [38]. It redistances efficiently at every
step and requires the velocity only on the interface, decoupling the level set method from
the velocity computation on0(t) and permitting the modular solution of moving interface
problems for PDEs. For the passive transport and geometric flows computed in Section 4,
we use the natural velocity extensions of Subsection 2.2, truncated and smoothed away from
the interface for numerical convenience. The following additional procedures are required
for geometric flows.

Differentiation ofϕ. We compute derivatives ofϕ by optionally smoothingϕ once, then
differentiating the ENO interpolant toϕ. Smoothing is helpful when the interface is faceted
or highly complex, becauseϕ is Lipschitz continuous with corners at the facets (as in Fig. 2
above) and unsmoothed ENO differentiation can be inaccurate at corners.

Truncation. The curvature and normal have singularities when∇ϕ= 0, so we truncate
geometric velocity fields away from0(t). We scale the velocity vectorF away from0(t)
so that its maximum norm over the set{|ϕ|> 2h} is equal to its maximum norm over the
set{|ϕ| ≤2h}. Thus largeF values near singularities cannot corrupt the solution.

Velocity smoothing. Differentiating the smoothed ENO interpolant toϕ produces accu-
rate normal vectors but noisy curvature, becauseϕ is only Lipschitz continuous; hence we
smooth curvature-dependent velocities. Each smoothing pass replaces each velocity value
by the arithmetic mean of the 3d nearest values. This commitsO(h2) error in each step,
so the total error due to smoothing at any fixed time isO(h2/k)=O(h) if the consistency
conditionk≥O(h) is satisfied. Thus this smoothing technique matches well with the first-
order CIR scheme. Higher-order smoothing can be used with a higher-order time stepping
scheme. Figure 7 shows smoothing of an anisotropic velocity field for moving a faceted
interface, with and withoutϕ and velocity smoothing.
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FIG. 7. Thex-componentFx of the triangular velocity fieldF = (1+ cos(3θ + 0.3)/2)N whereθ =ϕx/‖∇ϕ‖
is the angle between the normal vector and thex-axis andϕ is the hexagonal signed distance function of Fig. 2.
HereFx is computed with degree-1 ENO interpolation and differentiation, and plotted (a) unsmoothed on a 202

mesh, (b) after one smoothing pass on a 202 mesh, and (c) after one smoothing pass on a 402 mesh.

3.2.3. Redistancing

The level set equation for moving interfaces—unlike a general PDE—is relevant only
near the zero set of the solution. As a consequence, we can re-initialize or “redistance”
the solution at any time, by replacing it with the exact signed distance function to its zero
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FIG. 8. Boundary conditions implemented by projection.

set. Redistancing is expensive if done naively, but several fast schemes are available [1, 5,
36, 39]. After piecewise-linear contouring ofϕ, for example, the Voronoi diagram of the
resulting polygonal interface can be built in theoretically optimal time [44] and yields almost
instantaneous redistancing by standard optimal search techniques [16]. A simplified Voronoi
diagram [19] can yield the same result with considerably lower conceptual complexity;
however, implementations are not yet available.

Redistancing can be viewed as a form of filtering which eliminates many numerical issues
while preserving the interface. For example, boundary conditions far from the interface be-
come much less important because their effect is discarded after redistancing. Redistancing
also simplifies geometric velocities: whenϕ is a signed distance function,‖∇ϕ‖=1 near
0(t), soN andC simplify to∇ϕ and1ϕ.

3.2.4. Boundary Conditions

Semi-Lagrangian schemes require numerical boundary conditions to specify values for
ϕ(s, tn) when s lies outside the domainD covered by the grid. There are two simple
boundary conditions: extension and projection. In extension, we extendϕ as a constant or
linear function along lines normal to the boundary∂D and apply our standard interpolation
scheme to interpolate the extended values tos. In projection, we arrests as it leaves the
domain and use one-sided interpolation to the point wheres crosses∂D. Figure 8 shows
projection in action: if the points from Eq. (42) falls outside the domain, then the value of
ϕ is interpolated tos′ andϕ(x, tn+ k)=ϕ(s′, tn).

Our method uses projection because it is simple, effective, and it combines well with
ENO schemes which adapt automatically to one-sided interpolation. The combination of
projection with truncation, smoothing, and redistancing proved highly effective in our nu-
merical examples. Further research into boundary conditions might be useful in solving
parabolic problems like curvature flow where information enters the domain at high speed.

3.3. Convergence

Semi-Lagrangian time-stepping schemes are ideal for solving level set equations, because
they promise optimal efficiency via easy adaptive mesh refinement and unrestricted time
steps. To fulfill this promise, they must converge to the correct solution near the interface.
The following heuristics—and the experiments of Section 4—suggest that these schemes
should converge.
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3.3.1. Absence of shocks

Semi-Lagrangian schemes converge for Lipschitz continuous solutions of advection equa-
tions [12], but diverge when shock discontinuities are present [17]. This poses no problem
for level set equations, which—like advection equations in atmospheric science—have no
shocks. Indeed, the solutionϕ must remain Lipschitz continuous at all times, or we cannot
extract the zero set0(t). Lipschitz continuity can be rigorously proven for passive transport
and some geometric problems [10] and guaranteed in general by redistancingϕ at every
step.

Given thatϕ remains Lipschitz continuous, it is easy to see why semi-Lagrangian schemes
should work: At a shock,ϕ would be discontinuous, so a tiny error in velocity would make
the trajectory look the wrong way and commit anO(1) error inϕ, followed by F ; hence
shocks would move at the wrong speed. A Lipschitz continuousϕ has “kinks” or corners
at worst rather than discontinuities, so a small velocity error causes a small solution error.

3.3.2. The CFL Condition

The CFL condition requires that a convergent numerical scheme must propagate infor-
mation about solution values at approximately the right speed, and usually restricts the
time step. Our goal in applying semi-Lagrangian schemes to moving interface problems
is to satisfy the CFL conditionwithoutrestricting the time step. For interfaces undergoing
passive transport, we have linear advection where semi-Lagrangian schemes converge [12],
so the CFL condition is satisfied. For geometric problems involving curvature, the level
set equation becomes parabolic and information propagates along the interface with infi-
nite speed. Even so, our methods can satisfy the CFL condition ask=O(h)→ 0 for the
following heuristic reasons.

Nonlocal velocity computation.The domain of dependence of the CIR solutionϕ(x,
tn+1) obviously includes the single interpolation points= x+ kF(x, tn) and its stencil, but
the points in turn depends on theϕ values used to compute the extended velocityF(x, tn).
Thus the CFL condition can be satisfied in principle by computingF nonlocally with
arbitrarily large time steps. For PDE-type moving interface problemsF is almost always a
global functional ofϕ, so the CFL condition is satisfied.

From a theoretical point of view, if the solution is continuous and the problem has a
maximum principle, each new solution value is exactly equal to some old solution value:
define a velocity fieldF to point to that old value. This highly nonlocal velocity satisfies
the CFL condition with any time step.

Velocity smoothing. A specific nonlocal technique which satisfies the CFL condition is
to postprocess the velocity field by smoothing or averaging it over a sufficiently large stencil.
Accuracy can be maintained by increasing stencil size only logarithmically ash→ 0. In
practice, a few passes of smoothing produces convergent solutions even though curvature
flow velocities give parabolic level set equations, for which explicit schemes usually require
k=O(h2).

Redistancing. Replacingϕ by the signed distance to its zero set0(t) also implements
long-distance information transfer and helps satisfy the CFL condition. While redistancing
propagates information primarily normal to the interface, its influence is enhanced in regions
of high curvature such as corners where normal vectors cross near the interface: these are
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also the regions where propagation speeds are highest. Frequent redistancing also removes
many of the other inconvenient numerical artifacts of the level set method, such as boundary
conditions and treatment of singularities.

Velocity extension. For general moving interface problems, the velocityF is known
only on0(t) and must be extended toRd. Typically F is extended as a constant normal
to 0(t) [1, 5, 38, 39], propagating information along the same paths as redistancing and
satisfying the CFL condition in the same way.

Modularity. Since a major design goal of our method is modularity—the moving inter-
face code should have minimal information about the velocity-interface relationship—these
postprocessing techniques should maintain modularity while satisfying the CFL condition.
Nonlocal velocity computation and smoothing inhibit modularity, while the combination
of redistancing and velocity extension respects it.

4. NUMERICAL RESULTS

We study the accuracy of our semi-Lagrangian level set method on several interfaces
moving under passive transport and geometric motion with corners, anisotropy, nontrivial
topology, and curvature. Some PDE-type examples with a general velocity extension [38]
will be treated in future work.

Unless otherwise noted, all the examples were computed with the following numerical
parameters.

◦ Third-order ENO was used for both theϕ interpolation and the velocity computation
(in geometric moving interface problems whereV requires derivatives ofϕ).
◦ Three runs were made with 40, 80, and 160 time steps on a 402, 802, and 1602 mesh.

Most plots superimpose the three runs to demonstrate convergence to graphical accuracy.
◦ For curvature-dependent problems, the velocity was truncated and smoothed once

per step, andϕ was redistanced at every step to ensure the CFL condition was satisfied.

The method was implemented for two-dimensional level set equations in Standard C,
compiled with the SunSoft C compiler using the -fast flag, and run on one CPU of a 2-CPU
200 MHz Sun Ultra-2 under Solaris 2.6.

4.1. Passive Transport

Passive transport problems form convenient test cases for level set methods, because
complex exact solutions can easily be evaluated. Thus we can measure the error and rate
of convergence. We carry out convergence studies for three passive transport problems and
verify the accuracy, robustness, and conservation properties of the CIR scheme with ENO
interpolation of degrees 1, 2, and 3.

4.1.1. Bubbles in a Shear Flow

We begin our study of passive transport by measuring the accuracy of the method on
the collection of circular bubbles shown in Fig. 9, moving with a divergence-free linear
shearing velocity

F(x, y) = 1

2

(
x − 3y+ 1,−y− 1

2

)
. (43)



520 JOHN STRAIN

FIG. 9. A collection of bubbles moving with linear shearing velocity.

We used 20, 40, 80, and 160 time steps on 0≤ t ≤ 1 and 402, 802, 1602, and 3202 grids
on [−6, 6]× [−6, 6] (see Table I). ENO interpolation of degrees 1, 2, and 3 was used to
interpolateϕ. Table I reports the maximum of the exact distance function on the com-
puted contour at timet = 1. First-order accuracy is clearly evident along diagonals, where

TABLE I

Grid NT = 20 40 80 160

ENO degree 1
402 0.342 0.551 0.756 0.55
802 0.0428 0.15 0.235 0.353

1602 0.00628 0.00868 0.0677 0.231
3202 0.019 0.00351 0.00467 0.0294

ENO degree 2
402 0.0938 0.13 0.102 0.0911
802 0.0126 0.0389 0.104 0.145

1602 0.022 0.00967 0.00183 0.0272
3202 0.0238 0.0116 0.00536 0.00163

ENO degree 3
402 0.00708 0.122 0.188 0.193
802 0.018 0.00562 0.0431 0.0519

1602 0.0226 0.0103 0.00408 0.00189
3202 0.0239 0.0117 0.00555 0.00249

Note.Maximum error att = 1 in the interface shown in Fig. 9, moving with diver-
gence-free linear shearing velocityF(x, y)= 1

2
(x− 3y+ 1,−y− 1

2
), computed

with NT time steps of the CIR scheme with ENO interpolation of degrees 1, 2,
and 3. The domain is [−6, 6]2.
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h≤O(k). This agrees with the one-dimensional model theory of Section 2. The error de-
creases dramatically when we change from ENO degree 1 to degree 2, but degree 3 makes
no further improvement.

4.1.2. Grid Effects on Triangles

A common problem in moving interfaces is sensitive dependence on numerical artifacts
such as grid orientation. We check for grid effects in a sharply faceted interface by revolving,
shrinking, and expanding a triangle with a linear velocity field. In all cases, the interface
moves with the appropriate speed independently of its orientation relative to the grid.
Figure 10 plots the results with both second and third-order degree ENO on the domain
[−2, 2]2 and shows that grid effects are minimal. The dissipation exhibited in Fig. 10a could
be considerably reduced by second-order trajectory computation.

FIG. 10. Tests of grid effects in sharp corners with linear velocity field. (a) A rotating triangle at a half period
and a full period, computed with degree-2 ENO. (b) A triangle shrinking withV(x, y)= −5

2
(x, y) from t = 0 to

t = 1. (c) A triangle expanding withV(x, y)= 2(x, y) from t = 0 to t = 1. Plots (d) through (f) show the same
calculation with degree-3 ENO.
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FIG. 11. A collection of circular bubbles under a divergence-free shearing velocity.

4.1.3. Mass Conservation in a Shear Flow

We conclude our study of passive transport by measuring mass conservation in a collec-
tion of bubbles moving in the divergence-free shearing flow given by

F(x, y) = max(1− (1− x2− y2)
4
+, 0)

8(x2+ y2)
(−y, x). (44)

Figure 11 shows the extreme distortion produced by this flow, computed with 160 time
steps on 0≤ t ≤ 100 and a 1602 mesh on the domain [−6, 6]2. Despite this distortion, mass
is well conserved; the final area inside the computed interface is 12.4669, close to the exact
value of 4π = 12.5664.

In the exact solution interfaces cannot touch, because of standard uniqueness theorems
for ordinary differential equations. Thus merging of computational interfaces can happen
even when it is impossible in theory, and must be allowed for in any robust moving interface
method. Automatic handling of unexpected topological changes is one of the strengths of
the level set approach.

4.2. Geometry

We validate our semi-Lagrangian moving interface method by computing converged so-
lutions to a variety of geometric moving interface problems including viscosity solutions
to corners moving with unit normal velocity, the faceted Wulff limit for anisotropic nor-
mal velocity fields, complex topological changes under anisotropic curvature-dependent
flows, and nonconvex shapes shrinking to round points under flow by curvature. Moving
interface problems for PDEs require a general velocity extension but display little additional
complexity and will be solved in future.
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TABLE II

Grid NT = 20 40 80 160

ENO degree 1
202 0.0589 0.0634 0.0657 0.0668
402 0.0159 0.0179 0.019 0.0197
802 0.00557 0.00647 0.00696 0.00722

1602 0.00119 0.00128 0.00137 0.00142

ENO degree 2
202 0.0077 0.00801 0.00814 0.0082
402 0.0014 0.00146 0.00148 0.00148
802 0.000456 0.000481 0.000488 0.000489

1602 0.0000768 0.000078 0.0000792 0.0000795

ENO degree 3
202 0.00185 0.00194 0.00198 0.00199
402 0.000658 0.000669 0.000672 0.000674
802 0.000346 0.000349 0.00035 0.000351

1602 0.0000724 0.0000725 0.0000726 0.0000726

Note.Maximum of exact distance function att = 1 on a circle of radiusR(t)= 1+ t and
center (1/2π, 1/2π ), moving with constant normal velocityV = 1, computed withNT time
steps of the CIR scheme with ENO interpolation of degrees 1, 2, and 3.

4.2.1. Unit Normal Velocity

We verify first-order accuracy on a unit circle centered at(1/2π, 1/2π), expanding with
unit normal velocityF = N, extended naturally via Eq. (13) with singularities truncated;

F = N = ∇ϕ
max(10−8, ‖∇ϕ‖) . (45)

Table II reports the maximum of the exact distance function on the computed contour at
timet = 1, with 20, 40, 80, and 160 time steps on 0≤ t ≤ 1 and 202, 402, 802, and 1602 grids
on [−3, 3]2. ENO interpolation of degrees 1, 2, and 3 was used both in theϕ interpolation
and in the evaluation ofN. Considerably better than first-order accuracy is evident along
diagonals, whereh≤O(k), because the exact interface is a linear function oft .

4.2.2. Viscosity Solutions with Corners

One of the most important issues in level set equations is the correct computation of
“viscosity solutions” for faceted interfaces in geometric and PDE problems [27]. A key in-
gredient in this computation is a corner moving in or out with unit normal velocity. Inward
motion should keep corners sharp (the “shock” case), while outward motion should produce
rounded corners due to Huygens’ principle (the “rarefaction” case), as discussed in Sub-
section 2.1.2. Figure 12 shows a triangle moving with positive and negative unit normal ve-
locity, both aligned with the mesh and at an angle to check for grid effects, and demonstrates
that our semi-Lagrangian method computes the correct viscosity solution in each case.

This agrees with theory: any reasonable computed normal has unit length, so our method
propagates information at unit speed. An incorrect solution typically preserves a sharp
corner moving outward, rather than rounding it off as prescribed by Huygens’ Principle:
Figure 13 illustrates the difference. CIR produces the correct solution because zeroϕ values
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FIG. 12. Viscosity solutions for triangles moving with positive or negative unit normal velocity. (a) An
expanding triangle at zero angle to the mesh, with round corners. (b) An expanding triangle at angle 0.2 radians
to the mesh, with round corners. (c) A shrinking triangle at angle 0.2 radians to the mesh, with sharp corners.

delineating0(1) near the corner must be located on a unit circle centered somewhere on
0(0), rather than

√
2 from0(0), as they are in the incorrect solution.

4.2.3. Anisotropic Normal Velocity and the Wulff Limit

Another key issue for level set methods is anisotropic motion along the normal. Most
numerical methods for level set equations are connected to the theory of Hamilton–Jacobi

FIG. 13. Right and wrong propagation of corners under unit normal velocity.
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equations

ϕt + H(∇ϕ) = 0, (46)

which encounters difficulties when the HamiltonianH is nonconvex. For anisotropic normal
velocities

V = R+ ε cos(kθ), cosθ =ϕx/‖∇ϕ‖, (47)

the Hamiltonian is nonconvex if

R+ ε(1− k2)<0< R− |ε|, (48)

causing some Hamilton–Jacobi methods to break down.
In Fig. 14, we evolve an initially circular interface under several anisotropic normal ve-

locities, producing nonconvex Hamiltonians. The interface converges rapidly to the “Wulff
shape” [23, 42, 43] corresponding to each given anisotropy, as predicted by rigorous theory
[21]. The faceted Wulff shape is a natural limit, since portions of the interface with normal
vectors not aligned along minima of the velocity will grow faster, causing facets to develop.
In Fig. 15, we begin from a highly nonconvex initial interface, producing a severe test
of the method. The asymptotic Wulff shape is still computed accurately. The small grid-
dependence which remains could likely be removed with a second-order accurate trajectory
computation.

These computations were smoothed and their convergence improved by applying one
pass of smoothing toϕ before ENO differentiation, one pass toF after differentiation, and
redistancingϕ at every step. This emphasizes an essential reasons why the CIR scheme

FIG. 14. Wulff shapes growing from circular initial interfaces (with radius 1/2 and center at(1/2π, 1/2π)).
Here 0≤ t ≤ 1 and the domain is [−3, 3]2.
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FIG. 15. Wulff shapes developing from nonconvex initial interfaces (given by
√
(2πx − 1)2 + (2πy− 1)2=

2π(0.8+ 0.4 cos(5ξ)) where tanξ = (2πy− 1)/(2πx − 1)). Here 0≤ t ≤ 1 and the domain is [−3, 3]2.

works for level set equations: We are free to modifyϕ and F away from0(t) to suit
numerical convenience—or to satisfy the CFL condition.

4.2.4. Merging under Anisotropy

Starting from a collection of randomly placed, sized, and oriented trefoil shapes, we move
the interface along its normal with a threefold anisotropic speedV = 2+ cos(3θ + 0.3),
whereθ is the angle between the normal vector and the positivex-axis. This motion involves
considerable topological complexity, which is correctly computed by the level set approach.
Figure 16 shows that even this highly nonconvex initial interface is also aproaching the
asymptotic triangular Wulff shape ast→∞.

4.2.5. Circles under Curvature

A circle shrinking with normal velocity equal to its curvature has exact radiusR(t)=√
R(0)2− 2t , so with R(0)= 2 a circle should collapse to a point in time 0≤ t ≤ 2. A

smaller circle withR(0)= 1 vanishes in timet = 0.5. Figure 17 shows convergence to
graphical accuracy, computed with 20, 40, 80, 160 time steps on 202, 402, 802, 1602 grids
and plotted every 0.2 time units.

A convenient measure of convergence is the extinction time—the first time when the
interface completely vanishes. For the four runs shown, the extinction time is 1.1, 1.5, 1.73,
and 1.85, displaying slow but smoothly monotone first-order convergence to the correct
value 2. The extinction time is difficult to resolve because it depends sensitively on the
movement of the interface as it vanishes. Even with smoothing, our computed velocity
always moves the interface faster than the exact velocity.



FIG. 16. A collection of randomly located, sized, and oriented trefoils growing and merging under anisotropic
normal velocityV = 2+ cos(3θ + 0.3). Here our method used third-order ENO with (a) 40 time steps on a 402

mesh, (b) 80 steps on an 802 mesh, and (c) 160 steps on an 1602 mesh to achieve convergence to graphical accuracy.
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FIG. 17. Convergence of two circles collapsing under curvature flowV =C, computed fromt = 0 to the
extinction timest = 1/2 andt = 2 with third-order ENO on (a) 20 time steps on 202 grid covering [−4, 4]2 with
1 velocity smoothing pass per step, (b) 40 time steps on 402 grid covering [−4, 4]2 with 2 passes per step, (c) 80
steps on 802 grid with 3 passes, (d) 160 steps on 1602 grid with 4 passes.

For this parabolic problem, velocity smoothing and truncation,ϕ smoothing, and frequent
redistancing all contribute to convergence of the CIR scheme ask→ 0 with k=O(h). As
discussed in Subsection 3.3.2, they all play a role in satisfying the parabolic CFL condition
with these unusually large time steps. We truncated the velocity away from the interface at
each step, smoothed the truncated velocity once per step on the 202 mesh, twice per step on
the 402 mesh, and so forth. The resulting logarithmic increase in stencil width as the mesh
size goes to zero satisfies the CFL condition. We smoothedϕ once before ENO differentia-
tion, to compute derivatives of nonsmoothϕ values. We also redistancedϕ from the interface
at the end of every step, a highly nonlocal information transfer which also helps satisfy the
CFL condition. These smoothing and redistancing options were chosen after some experi-
mentation and constitute the minimum postprocessing required to achieve convergence.

4.2.6. Nonconvex Interfaces under Curvature

We verified that randomly placed, sized, and oriented nonconvex trefoil shapes collapse
under curvature flow to round points, as predicted by a geometric theorem [14]. Figure 18
shows results for 0≤ t ≤ 1/2 on [−4, 4]2, with one velocity smoothing pass, oneϕ smooth-
ing pass, and one redistancing per step. Experiments showed that this rather small amount
of smoothing sufficed for convergence to graphical accuracy.



FIG. 18. Convergence of a collection of trefoils to round points under curvature flowV =C, computed from
t = 0 to t = 1/2 with third-order ENO on (a) 40 time steps on 402 grid covering [−4, 4]2, (b) 80 steps on 802 grid,
(c) 160 steps on 1602 grid.
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FIG. 19. Nonconvex shapes merging under curvature-dependent anisotropic flowV = 2+ cos(3θ + 0.3)+
εC. Convergence to the viscosity solution asε→ 0 is demonstrated withε= 0.1 (a–c) andε= 0.01 (d–f); cf.
Fig. 16 for the limit caseε= 0.
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4.2.7. Nonconvex Interfaces Merging under Anisotropy Plus Curvature

Finally, we demonstrate topological complexity in the viscosity limit, with a curvature-
smoothed velocity

V = 2+ cos(3θ + 0.3)+ εC. (49)

We illustrate the limitε→ 0 computationally withε= 0.1 and 0.01, carrying out a con-
vergence study for each value ofε separately. Figure 19 shows the results, which converge
rapidly to the results shown in Fig. 16. We used one velocity smoothing pass, oneϕ smooth-
ing pass, and one redistancing per step.

4.3. Convergence

These numerical experiments have consistently demonstrated that our semi-Lagrangian
methods converge with appropriate problem-dependent truncation, smoothing, and redis-
tancing options. Our methods converge without options for passive transport and constant
normal velocity. When anisotropy or curvature is present, redistancing plus one to four
passes of velocity smoothing must be applied at each step to ensure convergence. These
conclusions agree with the heuristics of Subsection 3.3 and show that CFL timestep restric-
tions can be eliminated—even for curvature-dependent parabolic problems!

5. CONCLUSION

We have described and validated new numerical methods for moving interfaces, based
on semi-Lagrangian time stepping schemes for level set equations. We presented heuristic
arguments and experimental evidence showing these methods work well for difficult mov-
ing interface problems involving merging, faceting, transport, and anisotropic curvature-
dependent geometry.

These methods have unique capabilities

• to move interfaces with appropriate time steps unconstrained by numerical stability
issues,
• to decouple each mesh point from the others, allowing easy adaptive mesh refine-

ment, and
• potentially to decouple the velocity computation from the moving interface, allowing

convenient modular solution of a vast spectrum of moving interface problems.

Our ultimate goal is a “black-box” method for moving interfaces, which can accept the
interface and its velocity at timet and return the evolved interface one time step later.
Such a method can simplify the solution of moving interface problems, because the moving
interface code need not change when the physical problem off the interface is modified.

Planned future research on these methods includes

• further analysis of CFL conditions for parabolic problems with infinite propagation
speed,
• adaptive modular methods [38],
• second-order accurate time stepping,
• CAD geometry input and contouring with NURBS, and
• applications to industrial crystal growth problems, where the moving interface is

coupled to complex materials science.
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